
| A | , . | . <b>S</b> . 1 | <b>9</b> 10 2 | <b>,</b> , , , | · · · | •              | ,   |     | · · · · · · · · · · · · · · · · · · · | , <b>, , ,</b>               | / · -/ · |                              |
|---|-----|----------------|---------------|----------------|-------|----------------|-----|-----|---------------------------------------|------------------------------|----------|------------------------------|
|   |     |                |               | /              | *,*   |                | 1.  | •   | •                                     | <b>.</b>                     |          |                              |
|   | •   |                |               |                |       | ~              |     | -   |                                       | n Road, Beiji<br>150 Muir Ro | -        | PR China<br>z, CA 94553, USA |
|   |     |                |               |                |       | <b>A</b> , , . | , , | 00_ |                                       |                              |          |                              |

## Abstract



 $\mathbf{s}, \mathbf{1}, \mathbf{s}, \mathbf{0}$   $\mathbf{s}, \mathbf{1}, \mathbf{s}, \mathbf{0}$ 

. . . . . **s** (. . . . **s**) . . . . . . **s** ' . . . . . . . . **s** . . . . . . . . . <sup>,</sup> .s .s) \_\_\_ . . . . **/ -** \_\$ / . . . . \$ / . . -/ \_. . . **.** . . =s ( ii s . . .,  $1 \cdot 0'$  . . . . . . . . ,  $1 \cdot -$ \$ \_, ', \_ ', . \$\$. **S** . . **S S** . . . . . . . . . **S** . . . . 

 3
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

..... \$ .!.! ... \$ ...... \$\$..!... 8 / 8 / **8** · . . . **8** - . . . . . . . . . . . . . . . . . **8** · . **8** · . . . . . . . . . . . . . . . . . 

 5
 5
 5
 5
 5
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7

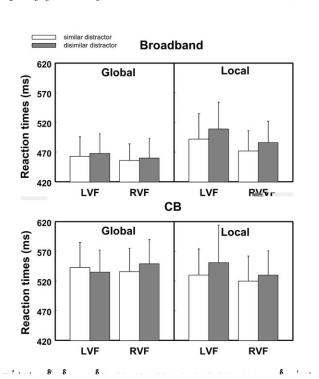
\$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$..\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$..\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$..\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$..\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\ \$\$...\

#### 2. Methods

## 2.1. Subjects

#### 2.2. Stimuli

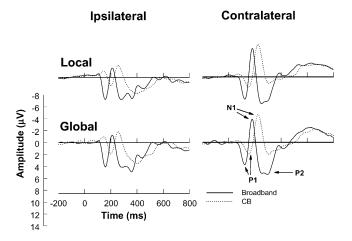
ss . 0.01 0 \$ . . . \$ .\$ 10% . . . . . . . . . . . . . (, ) , , , = 0 , **s** == 0 ,  $\textbf{s}_{\text{max}} \textbf{s}_{\text{max}} \textbf{s}_{\text{max}}$ . , r .\$ .\$ \_\_ , r . \_ , \_ . \_ . \$ \$ 1 s s s ... 10) **.s** . . . . . 888 ( \_), , , \$ .. . . . . . . . . .


... 1

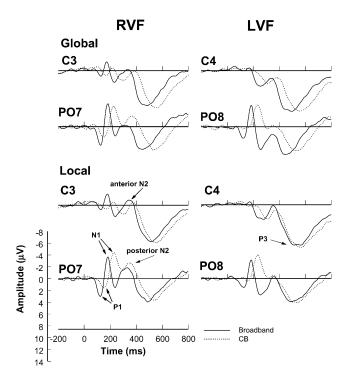
|            | . 7 . 7 . |          |
|------------|-----------|----------|
| -          |           |          |
| 1          | 100 00    | 1 0 0    |
| . 1        | 1 0 0     | 00 _00   |
| . <b>.</b> | _ 00 _ 00 | _00 , 00 |
| <b>A</b>   | _ 00 _ 00 | _00 , 00 |
| -          | _ 0 00    | _ 0 00   |

#### 3. Results

### 3.1. Behavioral performance


#### 3.1.1. RTs



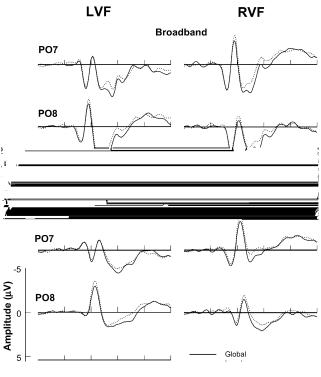

## 3.2. Electrophysiological activity

## 3.2.1. Effects of contrast balancing

s (1) (1) s s, s



 $F(F(1,1)) = 0 . \qquad 1 . , \qquad p < 0.00_{-}.$   $F(1,1) = 0 . \qquad 1 . , \qquad p < 0.001_{-}.$   $F(1,1) = 0 . \qquad p < 0.$   $F(1,1) = 0 . \qquad p < 0.$   $F(1,1) = 0 . \qquad p < 0.$   $F(1,1) = 0 . \qquad p < 0.$  F(1,1) = 0




|            |         |                     |  | · – |  |  |
|------------|---------|---------------------|--|-----|--|--|
| . <b>S</b> | _ ± .   | ± ,.<br>_ 1 ±       |  |     |  |  |
|            | 1 ±, 0. | , 1 ±<br>, 0 ± , 0. |  |     |  |  |

 $(F(1,1)=1..,p<0.00_{-})$  (F(1,1)=1..,p>0..) (F(1,1)=1..,p>0..) (F(1,1)=1..,p>0..)  $(F(1,1)=1..,p<0.00_{-})$   $(F(1,1)=1..,p<0.00_{-})$   $(F(1,1)=1..,p<0.00_{-})$   $(F(1,1)=1..,p<0.00_{-})$   $(F(1,1)=1..,p<0.00_{-})$   $(F(1,1)=1..,p<0.00_{-})$   $(F(1,1)=1..,p<0.00_{-})$   $(F(1,1)=1..,p<0.00_{-})$   $(F(1,1)=1..,p<0.00_{-})$   $(F(1,1)=1...,p<0.00_{-})$   $(F(1,1)=1...,p<0.00_{-})$ 

### 3.2.2. Effect of global/local attention

s , , , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s , s ,



 $\mathbf{s}$   $\mathfrak{s}$  0  $\mathfrak$ p < 0.00 ).

(F(1,1) = ..., p < 0.0).

F(1,1) = ..., p < 0.00). F(1,1) = ..., p < 0.00). F(1,1) = ..., p < 0.0). s\_ r\_ ( ... \_).

\$5. ' \_ \$ , \ 1 0 00 \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ . \ \$ .  $\mathbf{s} \cdot \mathbf{s} \cdot$ 

 \$\$, \$'''\$
 \$\$

 \$\$
 \$\$

 \$\$
 \$\$

 \$\$
 \$\$

 \$\$
 \$\$

 \$\$
 \$\$

 \$\$
 \$\$

 \$\$
 \$\$

 \$\$
 \$\$

 \$\$
 \$\$

 \$\$
 \$\$

 \$\$
 \$\$

 \$\$
 \$\$

 \$\$
 \$\$

 \$\$
 \$\$

 \$\$
 \$\$

 \$\$
 \$\$

 \$\$
 \$\$

 \$\$
 \$\$

 \$\$
 \$\$

 \$\$
 \$\$

 \$\$
 \$\$

 \$\$
 \$\$

 \$\$
 \$\$

 \$\$
 \$\$

 \$\$
 \$\$

 \$\$
 \$\$

 \$\$
 \$\$

 \$\$
 \$\$

 \$\$
 \$\$

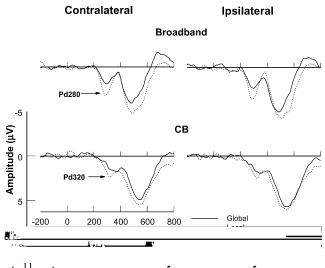
 \$\$
 \$\$

 \$\$
 \$\$

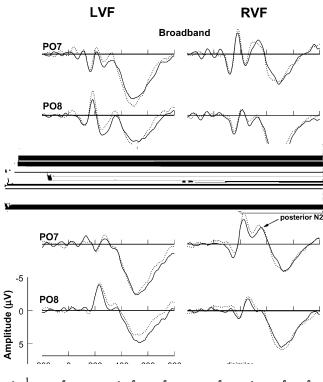
 \$\$
 \$\$

 \$\$
 \$\$

 \$\$
 \$\$


 \$\$
 \$\$

 \$\$
 \$\$

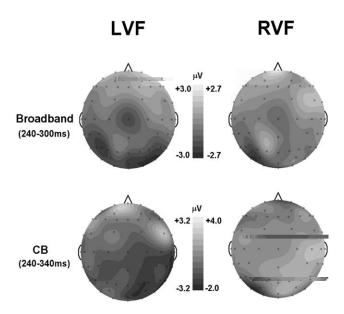

## 3.2.3. Target specific difference waves

\$\\ \text{5.} \\ \text{5.} \\





# 3.2.4. Interference effects




F(1,1) = 0, p < 0.0A, ... . X \_8 /... \_ ... (F(1,1) = 0.1, p < 0.01)(F < 1).  $\mathbf{s}_{-}$   $\mathbf{s}_{-}$  $\mathfrak{s} \ \text{\ \ } \mathfrak{s} \ (F(1,1)=1 \ . \ \ \ldots \ 1 \ , \ p < 0.00\_), \\$ 1 , , p < 0.0 ).  $\mathbf{s}$   $\mathbf{s}$   $\mathbf{s}$   $\mathbf{s}$   $\mathbf{s}$   $\mathbf{s}$  $(F(1,1) = , 1 , p < 0.0_{-}),$  s. . . . . 

#### 4. Discussion

## 4.1. The role of low SFs in the global precedence effect

 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 .



s\_ '.' s ... ( ... ... s. ... .....**s** ..... 1 ..... \$5... 1 .... 1 .... \$ ... \$ ... \$ ... 

#### 4.2. Mechanisms of global-to-local interference effect

 S
 1
 S
 S

 S
 S
 S

 S
 S
 S
 S

 S
 S
 S
 S

 S
 S
 S
 S

 S
 S
 S
 S

 S
 S
 S
 S

 S
 S
 S
 S

 S
 S
 S
 S

 S
 S
 S
 S

 S
 S
 S
 S

 S
 S
 S
 S

s ' (... 0). , s ' ' s s ' ' ' s s ' ' ' s s ' ' ' s s ' ' ' s s ' ' ' s s ' ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' ' s ' s ' ' s ' ' s ' s ' ' s ' s ' ' s ' s ' ' s ' s ' ' s ' s ' ' s ' s ' ' s ' s ' ' s ' s ' ' s ' s ' ' s ' s ' ' s ' s ' ' s ' s ' ' s ' s ' ' s ' s ' ' s ' s ' ' s ' s ' s ' ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s ' s

. \$8 ..... \$ , , \$ ...... 1 ... \$ , , \$ ...... \$ ..... \$ ..... \$ \$ .....\$. !...... \$... \$... \$... \$... .... **s** ... **s** ... **s** ... **s** ... 

# 4.3. Hemispheric organization of global/local processing

\$ . . \_ . . . . . . \_s \_\_ s \_\_ s \_\_ i \_\_ 

#### Acknowledgements

 5
 1
 55
 1
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 6
 5
 5
 5
 5</

#### References

- 1, 11 .
- s. s. s1\_

- s s. ,
- s., ... s. ... s. ... s. ... 1 \_\_\_\_\_\_ 0 1.

- 1 . .
- ss., s. 4 00,
- \_\_1111 \_.

- **ss.** / **A**

- . s , s 00<u>0</u> 111 111

- , .... A, , ... s .. , ... s s. 1 <u>1</u> 1
- 1 . 101 1 . .
- 000′ 1 0 ...

- \$8. ' ' s. -•
- s. s. s 000' \_ 1.
- \$8. ' ' ' S. S. ' . S . ' . 1

- 1.01, 1 ...